Spectra of Conformal Field Theories and Hyperbolic Manifolds

Dalimil Mazáč Institut de Physique Théorique, CEA-Saclay

> Korea - France Joint Workshop September 24, 2024

- 1. How do we rigorously define quantum field theory?
- 2. How do we compute observables?

Situation better for **conformal field theories**:

conformal bootstrap

- ∘ Precise axiomatic formulation in any number of dimensions.
- [∘] Effective for computations, even leading to new predictions. }

What Is Quantum Field Theory?

$$
\int_{x} c_{ijk} |x - y|^{-\Delta_{i} - \Delta_{j} + \Delta_{k}} \mathcal{O}_{k}(y).
$$

 \Rightarrow stringent constraints on the spectrum Δ_i, ρ_i and structure constants c_{ijk} .

tions:
$$
V = \bigoplus_i V_{\Delta_i, \rho_i}
$$

verates V_{Δ_i, ρ_i}

CFT Axioms

- 1. $V = a$ unitary representation of the conformal group in d dimensions.
	- ∘ *V* = space of states = space of local operators.
	- ∘ Decompose into irreducible representations: *V* = ⨁ .
	- \circ Local operators: $\mathscr{O}_i(x)$ with $x \in B^d$ generates $V_{\Delta_i, \rho_i}.$
- 2. Operator product expansion: $\mathcal{O}_i(x)\mathcal{O}_j(y) = \sum c_{ijk} |x-y|^{-\Delta_i-\Delta_j+\Delta_k} \mathcal{O}_k(y)$. *k*
- 3. Associativity: $\mathcal{O}_i(x)(\mathcal{O}_j(y)\mathcal{O}_k(z)) = (\mathcal{O}_i(x)\mathcal{O}_j(y))\mathcal{O}_k(z)$

Long term goal: Solve and classify CFTs in general dimension starting from these axioms.

- ∘ *d* = 2: partial progress (rational theories, Liouville theory).
- ∘ *d* > 2: The only solved examples are free theories, but infinitely many interacting examples surely exist.

A. Polyakov: "I was dreaming in the 1970s to have a classification of fixed points based on the operator product expansion. The program was successful in two dimensions, and I think it is not excluded that in three dimensions something like that is still possible."

Current status:

The conformal bootstrap: hopes and challenges

Hopes

- The conformal bootstrap axioms are complete = all solutions arise from physical conformal field theories.
- The only solutions with $d > 6$ are free fields.
- Generic (local) solutions with $d > 2$ are rigid = admit no continuous deformations.

- No explicitly constructed solutions besides free fields for $d > 2$.
- Generic conformal field theory expected to exhibit chaos (level repulsion).

Challenges

- Solutions of the full conformal bootstrap (in any d) from hyperbolic manifolds.
- This provides solutions of the conformal bootstrap with chaotic spectra.

This talk

conformal field theory in *d* **dimensions**

spectral geometry of hyperbolic (*d* + 1)**-manifolds**

1. Rigorous estimates on spectra of hyperbolic manifolds from conformal field theory.

2. A novel viewpoint on conformal field theory in general dimension.

[Bonifacio, Hinterbichler '19+'20], [Bonifacio, '21+'21] [Kravchuk, DM, Pal, '21], [Bonifacio, DM, Pal '23] [Adve, Bonifacio, DM, Pal, Sarnak, Xu WIP]

[Bonifacio, Kravchuk, DM, Pal WIP]

Spectra of hyperbolic manifolds

- Hyperbolic manifold M = Riemannian manifold of constant sectional curvature -1.
- Equivalently $M = \Gamma \setminus \mathbb{H}^d$, where $\mathbb{H}^d = \mathrm{SO}(d,1)/\mathrm{SO}(d)$ and Γ is a discrete subgroup of $\mathrm{SO}(d,1)$.
- Given *M*, consider the Laplace equation

- The high-energy spectrum typically exhibits quantum chaos.
- Focus on the spectral gap λ_1 .

Conjecture (Selberg): If $d = 2$ and Γ is a congruence subgroup of $SL_2(\mathbb{Z})$, then $\lambda_1 \geq 1/4$.

Question: What values does λ_1 assume as Γ ranges over <u>all</u> cocompact subgroups of $SO(d,1)$? **Today:** Answer this question for $d = 2$ by adapting the conformal bootstrap to hyperbolic manifolds.

-
-
-

$$
\Delta_M h_i = \lambda_i h_i
$$

with spectrum of eigenvalues $0 = \lambda_0 < \lambda_1 \leq \lambda_2 \leq \ldots$

Unifying conformal field theories and hyperbolic manifolds [Bonifacio, Kravchuk, DM, Pal WIP]

a measure function $\mu: \mathscr{A} \rightarrow \mathbb{R}_{\geq 0}.$

Definition: A *conformal measure space* is a measure space (Y, \mathcal{A}, μ) with an action of $G = SO(d,1)$.

-
-
- Hard to construct explicitly, here taken as a definition of CFT.

Example 1 *(d-dimensional conformal field theory)***:**

Example 2 *(hyperbolic d-manifolds)***:**

- Let $M = \Gamma \setminus \mathbb{H}^d$ be a hyperbolic d -manifold, for some $\Gamma \subset \mathrm{SO}(d,1)$.
- Then $Y = \Gamma \backslash SO(d,1)$ is a conformal measure space, with μ = Haar measure on $SO(d,1)$.
- $SO(d,1)$ acts on Y by right translations.

Rest of the talk: Formulate the conformal bootstrap as a method to study conformal measure spaces.

- **Main idea:** Define a mathematical object describing both conformal field theories and hyperbolic manifolds.
- Recall that a measure space (Y, \mathscr{A}, μ) consists of an underlying set Y , a σ -algebra of measurable sets $\mathscr{A},$ and
	-

• The path integral for quantum field theory on a manifold X = measure on a space of distributions $\mathcal{S}'(X)$. • *d*-dimensional conformal field theory on S^d = measure on $\mathcal{S}'(S^d)$ invariant under $SO(d+1,1)$.

Visualizing Γ \ SO(*d*,1)

The spectrum of a conformal measure space

- Fix a conformal measure space (Y, μ) and consider the Hilbert space of random variables $L^2(Y, \mu)$.
- Since $G = SO(d + 1, 1)$ acts on (Y, μ) , $L^2(Y, \mu)$ is a <u>unitary representation</u> of G .
- When (Y, μ) is sufficiently nice, $L^2(Y, \mu)$ decomposes into <u>unitary irreducible representations</u> of G .

- $\bullet\;$ Besides the trivial representation, all unitary irreps of G are infinite-dimensional. • Representation $R_{\Delta,\rho}$ labelled by $\Delta\in\mathbb{C}$ and $\rho\in{\rm SO}(d)$ ={ Young diagrams with $\leq d/2$ rows }. ̂
-
- $R_{\Delta,\,\rho}$ realized as a space of functions $\mathbb{R}^d \rightarrow \rho.$
	- 1. Trivial representation $R_{0,0} \simeq \mathbb{C}$.
	- 2. Principal series $R_{\Delta,\,\rho}$ with $\Delta\in d/2+i\mathbb{R}.$
	- 3. Complementary series $R_{\Delta,\,\rho}$ with $\Delta \in (m,d-m)$, where m = # of rows of ρ . 4. Exceptional series $R_{\Delta,\,\rho}$, discrete values of Δ for fixed $\rho.$
	-

 ∞ R_{Δ_i,ρ_i} *i*=0

Definition (*spectrum of a conformal measure space***):**

The *spectrum* of (Y, μ) is the set of $(\Delta^{}_i, \rho^{}_i)$ appearing in $L^2(Y, \mu) \simeq \bigoplus R_{\Delta^{}_i, \rho^{}_i}.$

 \bf{The} $\bf{unitary}$ \bf{dual} of $\rm{SO}(d+1,1)$ $\bf{classified}$ by Bargmann, Gelfand, Naimark, Thomas, Dixmier, Hirai, Takahashi, Thieleker

Interpreting the spectrum

$$
(f, \phi) = \int_{\mathbb{R}^n} f(x) \phi(x) dx.
$$

Conclusion: Spectrum of (*Y*, *μ*) related to the spectrum of scaling exponents.

- L^2 (2d Ising) $\simeq R_{0,0} \oplus R_{1/8,0} \oplus$ continuous spectrum
- L^2 (3d Ising) $\simeq R_{0,0} \oplus R_{0.5181...,0} \oplus R_{1.413...,0} \oplus$ continuous spectrum

Example 1 *(d-dimensional conformal field theory)***:**

- Let (Y, μ) be a c.m.s. with Y = space of distributions $\phi(x)$ on S^d , μ = path integral measure.
- Suppose $\phi(x)$ transforms like a conformal field of scaling exponent $\Delta \in (0, d/2)$.
- Claim: $L^2(Y, \mu)$ contains the complementary series irrep $R_{\Delta,0}$ of ${\rm SO}(d+1,1).$

Embedding $R_{\Delta,0} \to L^2(Y,\mu)$ provided by $f \mapsto (f,\phi) = \int f(x) \phi(x) dx$.

More general observables
$$
\int\limits_{\mathbb{R}^d}\dots \int\limits_{\mathbb{R}^d} f(x_1,\dots,x_k)\phi(x_1)\dots \phi(x_k)dx_1\dots dx_k
$$
 lead to a continuous spectrum.

Interpreting the spectrum

Example 2 *(hyperbolic d-manifolds)***:**

- $R_{\Delta,0}$ appears as a direct summand in $L^2(\Gamma\backslash {\rm SO}(d,1))\Leftrightarrow$ The Laplace operator on $\Gamma\backslash\mathbb{H}^d$ has an eigenvalue $\lambda = \Delta(d-1-\Delta)$. $R_{\Delta,0}$ appears as a direct summand in $L^2(\Gamma\backslash {\rm SO}(d,1))\Leftrightarrow$ The Laplace operator on $\Gamma\backslash\mathbb{H}^d$ $\lambda = \Delta(d-1-\Delta)$
- More generally $R_{\Delta,\rho}\subset L^2(\Gamma\backslash {\rm SO}(d,1))$ are in one-to-one correspondence with solutions of the Laplace equation on sections of the vector bundle over $\Gamma\backslash\mathbb{H}^a$ associated with $\rho.$ $R_{\Delta,\rho} \subset L^2(\Gamma \backslash SO(d,1))$

$$
\Rightarrow L^2(\Gamma \setminus SO(d,1)) \simeq \bigoplus_{i=0}^{\infty} R_{\Delta_i,\rho_i}
$$
 restricted to th

the spectral theorem for the Laplacian on Γ \ \mathbb{H}^d .

 $\textbf{Conclusion:}$ Spectrum of $\Gamma \backslash \operatorname{SO}(d,1) \Leftrightarrow$ spectrum of Laplace operators on $\Gamma \backslash \mathbb{H}^d$.

 Γ \ \mathbb{H}^{d} associated with ρ

restricted to the subspace of $SO(d)$ -invariant vectors equivalent to

Space of observables vs. space of states

We have considered $L^2(Y,\mu)$ in conformal field theory

- A typical element of $L^2(Y, \mu)$: $F[\phi] = \int ... \int f(x_1, ..., x_k) \phi(x_1) ... \phi(x_k) dx_1 ... dx_k$ \mathbb{R}^d \mathbb{R}^d
- $L^2(Y, \mu)$ is a unitary representation of the **Euclidean conformal group** $SO(d + 1, 1)$.
- Inner product: $(F_1, F_2) := \langle \overline{F_1} F_2 \rangle$.

How to recover the physical Hilbert space on S^{d-1} (spanned by local operators):

- Restrict $L^2(Y, \mu)$ to $V :=$ observables supported in B^d .
-
- Reflection positivity \Leftrightarrow unitarity \Leftrightarrow $(F, F)_L \geq 0$.
- Mod out by null states and complete to get the physical Hilbert space W .
- W is a unitary representation of the Lorentzian conformal group $SO(d,2)$. \widetilde{SO} SO(*d*,2)

\n- Introduce a twisted inner product on
$$
V: (F_1, F_2)_L := \langle \overline{r(F_1)} F_2 \rangle
$$
, $r =$ the sphere inversion.
\n- Reflection positivity \Leftrightarrow unitarity \Leftrightarrow $(F, F)_L \geq 0$.
\n

Correlations

inside a conformal measure space
$$
(Y, \mu)
$$
 with spectral decomposition $L^2(Y, \mu) \simeq \bigoplus_{i=0}^{\infty} R_{\Delta_i, \rho_i}$.

\nroduce G -equivariant maps $\mathcal{O}_i : R_{\Delta_i, \rho_i} \to L^2(Y, \mu)$.

\nin quantities of interest: correlations of products $\langle \mathcal{O}_{i_1}(f_1) \dots \mathcal{O}_{i_m}(f_m) \rangle := \int_{Y} \mathcal{O}_{i_1}(f_1) \dots \mathcal{O}_{i_m}(f_m) d\mu(y)$.

\npretation:

\nWhen (Y, μ) arises from a CFT and $\mathcal{O}(f) = \int_{\mathbb{R}^d} f(x) \phi(x) dx$, get m-point correlations of ϕ .

\nWhen (Y, μ) arises from a CFT and $\mathcal{O}(f) = \int_{\mathbb{R}^d} f(x) \phi(x) dx$, get m-point correlations of ϕ .

2. When (Y, μ) arises from a hyperbolic manifold, get <u>integrals of products of Laplace eigenfunctions</u>.

- Consider a conformal measure space (Y, μ) with spectral decomposition $L^2(Y, \mu) \simeq \bigoplus R_{\Delta_i, \rho_i}.$
- Introduce G -equivariant maps $\mathcal{O}_i : R_{\Delta_i, \rho_i} \to L^2(Y, \mu)$. $\rightarrow L^2(Y,\mu)$
- Main quantities of interest: correlations of products **Interpretation:**
	-

 $\langle \mathcal{O}_i(f) \rangle = 0$

$$
x_3\vert^{-\Delta_i-\Delta_k+\Delta_j}\vert x_2-x_3\vert^{-\Delta_j-\Delta_k+\Delta_i}f_1(x_1)f_2(x_2)f_3(x_3)dx_1dx_2dx_3
$$

$$
\langle \mathcal{O}_i(f_1)\mathcal{O}_j(f_2)\rangle = \delta_{ij} \int \int |x_1 - x_2|^{-2\Delta_i} f_1(x_1) f_2(x_2) dx_1 dx_2
$$

 $\langle O_i(f_1)O_j(f_2)O_k(f_3) \rangle = c_{ijk}$ $||x_1 - x_2||$ $-\Delta_i - \Delta_j + \Delta_k$ | $x_1 - x_3$ |

• Hyperbolic manifold: $c_{ijk} = \int h_i(y)h_j(y)h_k(y)d\mu(y)$ for Laplace eigenfunctions h_i , h_j , h_k .

• For <u>arithmetic</u> hyperbolic manifolds, c_{ijk} related to <u>values of *L*-functions</u>. $\Gamma \setminus \mathbb{H}^d$

Product expansion and the conformal bootstrap

• Identify a subalgebra $\mathscr{A} \subset L^2(Y, \mu)$ and let $\mathscr{O}_i(f_1)$, $\mathscr{O}_j(f_2) \in \mathscr{A}$.

$$
\sum_{m=0}^{\infty} c_{ijm} c_{k\ell m} \Psi_m^{ijk\ell} (f_1, f_2, f_3, f_4) = \sum_{m=0}^{\infty} c_{i\ell m} c_{jkm} \Psi_m^{i\ell kj}
$$

• Here $\Psi_m^{ijk\ell}$ are the <u>conformal partial waves</u>, fixed by representation theory of ${\rm SO}(d+1,1).$

Conclusion: The spectral data $((\Delta_i, \rho_i))_{i=0}^{\infty}$, c_{ijk} of any conformal measure space must satisfy the conformal bootstrap equations.

(product expansion) *ⁱ*

$$
\mathcal{O}_i(f_1)\mathcal{O}_j(f_2) = \sum_{k=0}^{\infty} c_{ijk} \mathcal{O}_k(f_1 \star f_2)
$$
 (product e)

• Apply the product expansion to $\langle O_i(f_1)O_j(f_2)O_k(f_3)O_\ell(f_4)\rangle$ to get the spectral identities

Linear programming bounds

- Turn the spectral identities into estimates on the spectrum using linear programming.
- Consider the set of identities arising from $i = j = k = \ell$:

Ingredients

- 1. $c_{\text{lim}} \in \mathbb{R} \Rightarrow (c_{\text{lim}})^2 \geq 0$.
- 2. Choose f_1, f_2, f_3, f_4 such that $A \geq 0$ whenever $(\Delta_m, \rho_m) \notin U$ for some $U \subset G$.

$$
\sum_{m=0}^{\infty} (c_{iim})^2 \left[\Psi_m^{iiii} (f_1, f_2, f_3, f_4) - \Psi_m^{iiii} (f_1, f_4, f_3, f_2) \right] = 0
$$

It follows that the spectrum of every conformal measure space must have a nonempty intersection with *U*.

$$
(\Delta_m, \rho_m) \notin U \text{ for some } U \subset \widehat{G}.
$$

Idea

-
- Bolza surface: *λ*¹ ≈ 3.838887258
	-
	- Klein quartic: $\lambda_1 \approx 2.6779$

 λ_1

-
- $[g, k_1, ..., k_r]$: genus g , elliptic points of orders $k_1, ..., k_r$

Theorem [Kravchuk, DM, Pal '21], [Bonifacio '21]

1. Every hyperbolic orbifold of genus two satisfies: $\lambda_1 \leq 3.8388977$.

2. Every hyperbolic orbifold of genus three satisfies: $\lambda_1 \leq 2.6784824$.

Question: What values does $\lambda_1(\Gamma)$ assume as Γ ranges over <u>all</u> cocompact subgroups of $PSL_2(\mathbb{R})$?

Estimates on the spectral gaps of hyperbolic surfaces

Answer: [Kravchuk, DM, Pal '21], [Adve, Bonifacio, DM, Pal, Sarnak, Xu WIP]

 $\lambda_1^{(J)}$ = (spectral gap of the Laplacian acting on symmetric traceless tensors of rank J).

Estimates on the spectral gaps of hyperbolic 3-manifolds

[Bonifacio, DM, Pal '23]

Natural question:

- Why is the conformal bootstrap method so powerful?
- Is it in some sense complete?

Theorem (Adve, to appear): Yes, at least for cocompact subgroups of $G = \text{PSL}_2(\mathbb{R})$.

More precise statement: Every putative discrete spectrum with at most polynomial growth which solves all the conformal bootstrap identities is in fact the spectrum of $\Gamma \setminus \mathrm{PSL}_2(\mathbb{R})$ for some Γ .

implying, in principle, any true statement about the spectral data of $\Gamma \backslash G$,

- mathematical objects.
- These objects are measure spaces with an action of the group $SO(d,1)$.
- Associativity of multiplication gives a large set of identities for the spectral data of such measure spaces. • These identities and linear programming produce (nearly) sharp spectral bounds.
-

- replaced by the Hilbert space of observables.
- Can we use it to prove new spectral estimates in non-unitary CFTs, e.g. percolation?
- Finite-volume hyperbolic d -manifolds rigid for $d > 2$ (Mostow). Is this related to rigidity of higher-dimensional conformal field theories?
- Improve bounds on triple products c_{ijk} as $\lambda_k \to \infty$ towards the Lindelöf hypothesis for *L*-functions.

• Hyperbolic d -manifolds and conformal field theories in $d-1$ dimensions described by the same type of

• In the context of conformal field theories, our formulation does not rely on unitarity. The Hilbert space of states

Summary

Future directions

Thank you!