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What Is Quantum Field Theory?

1. How do we rigorously define quantum field theory?

2. How do we compute observables?

Situation better for conformal field theories:

o Precise axiomatic formulation in any number of dimensions.
conformal bootstrap

o Effective for computations, even leading to new predictions.



CFT Axioms

1. V = a unitary representation of the conformal group in d dimensions.

o V = space of states = space of local operators.

o Decompose into irreducible representations: V = @ VA,, Pr

l

o Local operators: 0 (x) with x € B¢ generates Va -

2. Operator product expansion: O(x)O(y) = Z Ciir | X =y |_Ai_AJ'+A’< O0,.(y).
k

3. Associativity: O,(x)(0(y)0,(2)) = (Ox)0(y)) O(z)

= stringent constraints on the spectrum A, p; and structure constants ¢, .



Long term goal: Solve and classify CFTs in general dimension starting from these axioms.

A. Polyakov: “| was dreaming in the 1970s to have a
classification of fixed points based on the operator product

expansion. The program was successful in two dimensions, and

| think it is not excluded that in three dimensions something like
that is still possible.”

Current status:
o d = 2: partial progress (rational theories, Liouville theory).

o d > 2: The only solved examples are free theories, but infinitely many interacting
examples surely exist.



The conformal bootstrap: hopes and challenges

Hopes

 The conformal bootstrap axioms are complete = all solutions arise from physical conformal field theories.

» The only solutions with d > 6 are free fields.

 Generic (local) solutions with d > 2 are rigid = admit no continuous deformations.

Challenges

« No explicitly constructed solutions besides free fields for d > 2.

* (Generic conformal field theory expected to exhibit chaos (level repulsion).

This talk

» Solutions of the full conformal bootstrap (in any d) from hyperbolic manifolds.

* This provides solutions of the conformal bootstrap with chaotic spectra.



This talk

1
conformal field theory spectral geometry
in d dimensions SO(1,d + 1) of hyperbolic (d + 1)-manifolds
2

1. Rigorous estimates on spectra of hyperbolic manifolds from conformal field theory.

[Bonifacio, Hinterbichler ’19+°20], [Bonifacio, '21+’21]
[Kravchuk, DM, Pal, ’21], [Bonifacio, DM, Pal ’23]
[Adve, Bonifacio, DM, Pal, Sarnak, Xu WIP]

2. A novel viewpoint on conformal field theory in general dimension.
[Bonifacio, Kravchuk, DM, Pal WIP]



Spectra of hyperbolic manifolds

« Hyperbolic manifold M = Riemannian manifold of constant sectional curvature -1.
. Equivalently M = I'\H<, where HY = SO(d,1)/SO(d) and T is a discrete subgroup of SO(d,1).

* Given M, consider the Laplace equation
Ay hy = 4 by

with spectrum of eigenvalues 0 = 4, < 4, <4, < ...

* The high-energy spectrum typically exhibits quantum chaos.

» Focus on the spectral gap 4.

Conjecture (Selberg): If d = 2 and I is a congruence subgroup of SL.,(Z), then 4, > 1/4.

Question: What values does 4, assume as | ranges over all cocompact subgroups of SO(d,1)?

Today: Answer this question for d = 2 by adapting the conformal bootstrap to hyperbolic manifolds.



Unitying conformal field theories and hyperbolic manitolds

[Bonifacio, Kravchuk, DM, Pal WIP]

Main idea: Define a mathematical object describing both conformal field theories and hyperbolic manifolds.

Recall that a measure space (Y, &, i) consists of an underlying set Y, a o-algebra of measurable sets &/, and
a measure function u : & — R,

Definition: A conformal measure space is a measure space (Y, </, 1) with an action of G = SO(d, 1).

Example 1 (d-dimensional conformal field theory):
» The path integral for quantum field theory on a manifold X = measure on a space of distributions & '(X).
. d-dimensional conformal field theory on S¢ = measure on &'(S¢) invariant under SO(d + 1,1).

* Hard to construct explicitly, here taken as a definition of CFT.

Example 2 (hyperbolic d-manifolds):
e Let M = I"'\H“ be a hyperbolic d-manifold, for some I" ¢ SO(d,1).

« Then Y =1\S0O(d,1) is a conformal measure space, with 4 = Haar measure on SO(d, 1).
« SO(d,1) acts on Y by right translations.

Rest of the talk: Formulate the conformal bootstrap as a method to study conformal measure spaces.



Visualizing '\ SO(d,1)

SO(d) fibre

SO%d,1)

'\ S0%d,1) HY = SO%d,1)/SO(d)

j
I'\H“ base C\H d



The spectrum of a conformal measure space

. Fix a conformal measure space (Y, 1) and consider the Hilbert space of random variables L*(Y, u).
. Since G = SO(d + 1,1) acts on (Y, 1), L*(Y, 1) is a unitary representation of G.
. When (Y, 1) is sufficiently nice, L*(Y, u) decomposes into unitary irreducible representations of G.

The unitary dual of SO(d —+ 1, 1) classified by Bargmann, Gelfand, Naimark, Thomas, Dixmier, Hirai, Takahashi, Thieleker

» Besides the trivial representation, all unitary irreps of G are infinite-dimensional.

A

- Representation R, , labelled by A € C and p € SO(d)={ Young diagrams with < d/2 rows }.

- R, ,realized as a space of functions R = p.

1. Trivial representation R, ~ C.
2. Principal series Ry , with A € d/2 +iR.
3. Complementary series R, , with A € (m,d —m), where m = # of rows of p.

4. Exceptional series R A, p discrete values of A for fixed p.

Definition (spectrum of a conformal measure space):

o0
The spectrum of (Y, i) is the set of (A, p;) appearing in LY, U) =~ @RAM-'
i=0



Interpreting the spectrum

Example 1 (d-dimensional conformal field theory):

. Let (Y, u) be a c.m.s. with Y = space of distributions ¢(x) on S¢, u = path integral measure.
« Suppose @(x) transforms like a conformal field of scaling exponent A € (0, d/2).
. Claim: L*(Y, 1) contains the complementary series irrep R o of SO(d + 1,1).

Embedding Ry o — L*(Y, u) provided by f — (f, @) = J ) p(x)dx.
Rn
More general observables J J fxgs oo, x)P(x)...p(x)dx, .. .dx; lead to a continuous spectrum.
RY R4

Conclusion: Spectrum of (Y, u) related to the

. L*(2d Ising) =~ Ry D Ry 5 D continuous spectrum

. L*(3d Ising) = Ry D Rys181...0 D Ry 413, o D continuous spectrum



Interpreting the spectrum

Example 2 (hyperbolic d-manifolds):

« R, o appears as a direct summand in L*(T"'\SO(d,1)) < The Laplace operator on I\ H¢ has an
eigenvalue A = A(d—1— A).

- More generally R, , C L*(T'\SO(d,1)) are in one-to-one correspondence with solutions of the
Laplace equation on sections of the vector bundle over I\ H associated with p.

o0

= L*('\SO(d,1)) ~ @R A, festricted to the subspace of SO(d)-invariant vectors equivalent to
=0

the spectral theorem for the Laplacian on I\ H¥.

Conclusion: Spectrum of '\ SO(d,1) on "'\ H




Space of observables vs. space of states

We have considered L*(Y, 1) in conformal field theory

- A typical element of L*(Y, u): Fl¢] = J Jf(xl’ o X )P (X)) .. (X )dx; .. .dx,

RY R4

. L*(Y, ) is a unitary representation of the Euclidean conformal group SO(d + 1,1).

+ Inner product: (F, F,) := (F|F,).

How to recover the physical Hilbert space on g1 (spanned by local operators):

Restrict L(Y, 1) to V := observables supported in B.

Introduce a twisted inner product on V: (F|, F,); := (r(F))F,), r =the sphere inversion.
Reflection positivity < unitarity < (F, F); > 0.
Mod out by null states and complete to get the physical Hilbert space W.

W is a unitary representation of the Lorentzian conformal group %(d,Z).

Sd—l



Correlations

o0
. Consider a conformal measure space (Y, ) with spectral decomposition L*(Y, U) =~ @R A p:

+ Introduce G-equivariant maps O; : Ry , — L*(Y, ). i=0
- Main quantities of interest: correlations of products <@i1(f1)° . @im(fm)) 1= J@il(ﬂ). . @im(fm) du(y).
Interpretation: v

1. When (Y, u) arises from a CFT and O(f) = J f(x)p(x)dx, get m-point correlations of ¢.

Rd
2. When (Y, u) arises from a hyperbolic manifold, get integrals of products of Laplace eigenfunctions.

(O(f)) =0

(OL[)O(f2) = 5,-]” |, = X, | 7% £ e ) (0y)dx, dx,

(OfDOL)O(13) = ¢, ” |y — X, | AT x — g | TR TR x, — o | T TR () ) (6 ) (03X o dxs

+ Hyperbolic manifold: ¢, = J h(y)h(y)h(y)du(y) for Laplace eigenfunctions h;, h;, .

I\ H“
* For arithmetic hyperbolic manifolds, ¢;;, related to values of L-functions.




Product expansion and the contormal bootstrap

- |dentify a subalgebra of C L*(Y, u) and let O(f), O(f) € 4.

o0

O(f)O0(f) = Z Cii Oy X 1) (product expansion)
k=0

* Apply the product expansion to (O )0« 1,)0,(f3)O(f4)) to get the spectral identities

s L B
Z CiimChem Y (1o Jos 30 Ja) = Z CiemCitom P (fys fas 30 12) >_< = (contormal bootstrap)

m=0 m=0

- Here ‘PZLM are the conformal partial waves, fixed by representation theory of SO(d + 1,1).

Conclusion: The spectral data ((4,, p;) .2 ¢;i of any conformal measure space must satisfy the conformal
bootstrap equations.



Linear programming bounds

Idea

» Turn the spectral identities into estimates on the spectrum using linear programming.

- Consider the set of identities arising fromi=j =k ="

D € T2y fos oo ) = Wik (s fis fro )] = O
m=0 S ~- -
A

Ingredients

2. Choose fi, f5, f3, f4 such that A > O whenever (A, ,p,.) € U forsome U C G .

It follows that the spectrum of every conformal measure space must have a nonempty intersection with U.



Estimates on the spectral gaps of hyperbolic surfaces

Theorem [Kravchuk, DM, Pal ’21], [Bonifacio '21]

1. Every hyperbolic orbifold of genus two satisfies: 4; < 3.8388977.
Bolza surface: 1; = 3.838887258

2. Every hyperbolic orbifold of genus three satisfies: 4, < 2.6734824.

Klein quartic: 4, = 2.6779

Question: What values does A,(I') assume as I ranges over all cocompact subgroups of PSL,(R)?

Answer: [Kravchuk, DM, Pal ’21], [Adve, Bonifacio, DM, Pal, Sarnak, Xu WIP]

2O g, ky, ...,k ]: genus g, elliptic points of orders k;, ..., k

r




Estimates on the spectral gaps of hyperbolic 3-manifolds

[Bonifacio, DM, Pal ’23]

\/ AP =1 upper bound from the conformal
5F bootstrap with G = SO(3,1)

red dots =
discrete, cocompact C G

L
°

.‘ t . ) :o| .0.‘..:. .o o0 .0 .'.: .: o. ¢ . ’ ... " .‘ .. (1)
%.0 0.5 1.0 1.5 2.0 2.5 — I3.0I — I3.5 \/ﬂl T 1

/ll(f ) — ( spectral gap of the Laplacian acting on symmetric traceless tensors of rank J ).



Natural question:

 Why is the conformal bootstrap method so powerful?

* |sitin some sense complete?

\

implying, in principle, any true statement about the spectral data of I '\ G,

Theorem (Adve, to appear): Yes, at least for cocompact subgroups of G = PSL,(R).

More precise statement: Every putative discrete spectrum with at most polynomial growth which solves all
the conformal bootstrap identities is in fact the spectrum of I '\ PSL,(R) for some I



Summary

» Hyperbolic d-manifolds and conformal field theories in d — 1 dimensions described by the same type of
mathematical objects.

» These objects are measure spaces with an action of the group SO(d,1).
* Associativity of multiplication gives a large set of identities for the spectral data of such measure spaces.

* These identities and linear programming produce (nearly) sharp spectral bounds.

Future directions

* |n the context of conformal field theories, our formulation does not rely on unitarity. The Hilbert space of states
replaced by the Hilbert space of observables.

 Can we use it to prove new spectral estimates in non-unitary CFTs, e.g. percolation?

» Finite-volume hyperbolic d-manifolds rigid for d > 2 (Mostow). Is this related to rigidity of higher-dimensional
conformal field theories?

» Improve bounds on triple products ¢;; as A, — oo towards the Lindeldf hypothesis for L-functions.



Thank you!



